Multi-Scale Learned Iterative Reconstruction | IEEE Journals & Magazine | IEEE Xplore
Scheduled Maintenance: On Monday, 30 June, IEEE Xplore will undergo scheduled maintenance from 1:00-2:00 PM ET (1800-1900 UTC).
On Tuesday, 1 July, IEEE Xplore will undergo scheduled maintenance from 1:00-5:00 PM ET (1800-2200 UTC).
During these times, there may be intermittent impact on performance. We apologize for any inconvenience.

Multi-Scale Learned Iterative Reconstruction


Abstract:

Model-based learned iterative reconstruction methods have recently been shown to outperform classical reconstruction algorithms. Applicability of these methods to large s...Show More

Abstract:

Model-based learned iterative reconstruction methods have recently been shown to outperform classical reconstruction algorithms. Applicability of these methods to large scale inverse problems is however limited by the available memory for training and extensive training times, the latter due to computationally expensive forward models. As a possible solution to these restrictions we propose a multi-scale learned iterative reconstruction scheme that computes iterates on discretisations of increasing resolution. This procedure does not only reduce memory requirements, it also considerably speeds up reconstruction and training times, but most importantly is scalable to large scale inverse problems with non-trivial forward operators, such as those that arise in many 3D tomographic applications. In particular, we propose a hybrid network that combines the multi-scale iterative approach with a particularly expressive network architecture which in combination exhibits excellent scalability in 3D. Applicability of the algorithm is demonstrated for 3D cone beam computed tomography from real measurement data of an organic phantom. Additionally, we examine scalability and reconstruction quality in comparison to established learned reconstruction methods in two dimensions for low dose computed tomography on human phantoms.
Published in: IEEE Transactions on Computational Imaging ( Volume: 6)
Page(s): 843 - 856
Date of Publication: 27 April 2020

ISSN Information:

PubMed ID: 33644260

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.